机器学习方法:回归(三):最小角回归Least Angle Regression(LARS),forward stagewise selection

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld
希望与志同道合的朋友一起交流,我刚刚设立了了一个技术交流QQ群:433250724,欢迎对算法、技术、应用感兴趣的同学加入。

前面两篇回归(一)(二)复习了线性回归,以及L1与L2正则——lasso和ridge regression。特别描述了lasso的稀疏性是如何产生的。在本篇中介绍一下和lasso可以产生差不多效果的两种feature selection的方法,forward stagewise selection和最小角回归least angle regression(LARS)。尤其是LARS,网上很多资料写的不太清楚,我尽量写的清楚一点。本文主要是参考[1]的前面几章,大家可以直接看原文写的更清楚。

关于特征选择feature selection
在很多实际应用中,我们往往需要处理大量高维数据,其中存在很多噪音或者不相关的属性;而且维度越高计算量也越高。大多数工程师都会想到做一下特征选择,即挑选一部分有价值的属性维度用于计算,以期望在提高准确性的同时降低计算复杂度。那么如何进行特征选择呢?

一般来说可以分为有监督和无监督两大类,无监督的方法就是普适性的了,一般是希望从数据的分布、或者局部结构来找到区分性最好的属性,但是就是因为是无监督的,肯定不会对你所需要的任务有特别的倾向,选出来的不一定是最合适的特征。而有监督的选择肯定会基于训练样本的标记,使得选出来的特征会适合特定的任务,但是很难用到其他问题中。特征选择这个topic说实话被水了很多年,真正有价值的不见得多——很多以前觉得计算能力不足的问题选择随着CPU/GPU的性能提升,不再是瓶颈,那么很多降维的需求就没有了。现在还要做特征选择,一方面是希望找到真正有用的特征,另一方面是希望“稀疏”,事实证明稀疏性在提高模型的准确性以及降低overfitting方面都很有作用。

如果要看无监督的feature selection可以看一下浙大蔡登教授的Unsupervised Feature Selection for Multi-cluster Data [2],方法简单实用;在本文中,我们主要讨论两种有监督的选择方法,并且是基于greedy思想的。这两个方法和LASSO非常相关,上一篇中我也提过,LASSO本身也可以用来做特征选择。

问题描述

在本文中,用下图中的数据为例子来说明:
这里写图片描述
表 1
X=(x1,x2,...,xn)TRn×m 表示数据矩阵,其中 xiRm 表示一个m维度长的数据样本; y=(y1,y2,...,yn)TRn 表示数据的label,这里只考虑每个样本一类的情况。在表1的例子中, n=442m=10 。另外,假设数据是经过一些预处理的:样本中心化并且是列单位长度的, y 是中心化的(减去均值),即

i=1nyi=0,i=1nxij=0,i=1nx2ij=1j=1,2,,m.

我们希望找到一个回归系数 β^Rm ,使得 μ^=Xβ^ 。Lasso的优化目标是这样的:

minβ^=12yμ^2,s.t.j=1m|βj^|t

其中参数 t0 。很明,当 t 不断增大的时候,对β^约束力就越来越小,当大到线性回归的 β^ l1 -norm的时候就没有约束力了。见图1左边,表示 t 不断增大的过程中,所有十个βj^的变化过程。很容易发现,在 t 比较小的时候,回归系数是稀疏的。比如在t=1000时,只有3、9、4、7维度是非零的。

这里写图片描述
图1

forward stagewise selection

forward stagewise selection方法,下面简称为stagewise,是一个迭代算法。选择过程从 μ^=0 开始,并且不断向前走很小的step来完成回归模型(回归系数)。具体的过程如下:

令当前的回归预测是 μ^ ,定义 c(μ^) 为当前的相关系数(current correlations):

c=c(μ^)=X(yμ^)

也就是说, c^j 是正相关于维度 xjRn 和当前残差的相关度。所以,下一步就是往相关系数最大的维度方向走一小步:
j^=argmax|c^j|andμ^μ^+ϵsign(c^j^)xj^

其中 ϵ 是一个很小的常数——很小是很有必要的,如果很大的话就容易错过一些中间状态——比如,如果 ϵ=|c^j^| 这么大的话stagewise方法就退化到了经典的“Forward Selection ”方法,是完全贪心选择的一次一个特征维度。但是在stagewise中,每次只会走很小一步,所以有可能在一个方向上走多步。图1的右图是stagewise的所有 βj^ 变化过程,大概有六千步很小的迭代,使得变化看起来很光滑。可以看到,Lasso和stagewise的结果看起来“几乎”是一样的,在比较小的 t 的时候都会产生类似的稀疏的结果。

stagwise方法非常简单,易于实现,但是主要的问题是需要有大量的迭代步骤,因此计算量会比较大。事实上,不论是Lasso还是Stagewise方法都是Least angle regression(LARS)的变种。LARS的选择不需要经历那么多小的迭代,可以每次都在需要的方向上一步走到最远,因此计算速度很快,下面来具体描述一下LARS。

最小角回归Least angle regression,LARS

先用一个两维的例子来描述LARS的思路,后面再描述下任意维度下的统一算法。
LARS算法也是要得到形式为μ^=Xβ^的预测值,对于m维度的数据,最多只要m步就可以把所有的维度都选上,因此在迭代次数上是非常小的。下面图2说明了LARS在2维数据下的选择过程, X=(x1x2)
这里写图片描述
图2

对于前面一节提到的相关系数,我们可以把 y 等价替换成其在由x1x2所张成的空间中的投影 y¯2 ,即

c=c(μ^)=X(yμ^)=X(y¯2μ^)

算法也是从 μ^0=0 开始的,从图2可以看出, y¯2μ^0 显然更靠近 x1 ,也就是说, c1(μ^0)>c2(μ^0) ,于是LARS会选 x1 走一步,使得
μ^1=μ^0+γ^1x1

(在这里,如果是stagewise就选很小的 γ^1 ;而如果是Forward Selection,会选择一个足够大的 γ^1 使得 μ^1=y¯1 ,即 y x1方向上的投影。)LARS会选择上面两个情况的一个中间结果——刚好使得 y¯2μ^1 可以平分 x1 x2 之间的夹角,因此, c1(μ^1)=c2(μ^1) 。 图2中可以看到上面的选择结果, y¯2μ^1 是坐落在单位向量 u2 的方向上的。下一步LARS的更新方向是:
μ^2=μ^1+γ^2u2

m=2 的情况下, γ^2 是需要选择合适的大小使得 μ^2=y¯2 ,得到线性回归的结果。如果 m>2 的情况下,LARS会继续探索更多的方向。图2中阶梯线表示stagewise的一个迭代过程,最后也攀爬到 y¯2 。因此,其实LARS和stagewise的区别就在于,我们是可以计算出在一个方向上需要走多远的。

下面我们来讨论一下多维情况,和前面 m=2 一样,LARS的每一步都是沿着某一个角平分线的方向上走的。假设 X 的列向量x1,x2,,xm都是线性无关的。记 A {1,2,,m} 的一个子集,定义矩阵

XA=(sjxj)jA

其中符号 sj=±1 。定义 GA=XTAXA ,以及 AA=(1TAG1A1A)1/2 。其中 1A 表示全1向量,长度和 A 中的元素个数一样。对于 XA 的角平分线方向上的单位向量 uA 可以表示为:
uA=XAwA,wA=AAG1A1A

使得和每一个 xj 都有相同的角度(小于90度),并且
XTAuA=AA1A,anduA2=1


上面的可以当做结论,可以跳过证明部分。
证明:
1、首先 uA 肯定可以表示成 XA 的线性组合形式 uA=XAwA ,这里向量 wA 还是未知的;
2、 uA 平分X_{\mathbf{A}} XA ,也就是说

XTAuA=XTAXAwA=z1A

其中 z 是一个常数,则wA=z(XTAXA)11A;并且 uA2=1 ,所以
z21TA(XTAXA)1XTAXA(XTAXA)11A=1z=(1TA(XTAXA)11A)1/2

得证。


好,接下来可以给出LARS的统一过程了。

假设当前步骤下LARS的预测结果是 μ^A ,所以要求当前的相关系数:

c^=c(μ^A)=X(yμ^A)

集合 A 是其中拥有最大(绝对值)相关系数的维度的标号集合。
C^=maxj{|c^j|}andA={j:|c^j|=C^}

根据之前分析的,我们可以计算出

XA=(sjxj)jA

AA=(1TAG1A1A)1/2,GA=XTAXA

uA=XAwA,wA=AAG1A1A

同时定义:

a=XuA

那么下一步LARS更新 μ^A 会采用:

μ^A+=μ^A+γ^uA

γ^=min+jAcC^c^jAAaj,C^+c^jAA+aj.

其中 min+ 表示取正数部分的最小值,并且会把这个最小 γ^ 值对应的 j^ 这个维度加入到选出来的特征维度集合 A 了。新的active set是 A+=A{j^}


证:
如果当前步骤下LARS的预测结果是 μ^A ,那么下步之后的预测(会加进一个维度j)就是

μ(γ)=μ^A+γuA

其中 γ>0 ,那么这个时候 X 所有维度xj的相关系数就是

cj(γ)=xTj(yμ(γ))=xTj(y(μ^A+γuA))=c^jγaj

如果 jA (在当前已选的集合里),那么,

|cj(γ)|=C^γ(XTAXAwA)j=C^γAA

从前面的 AA=(1TAG1A1A)1/2 可以知道 AA>0 ,也就是说所有之前挑选出来的维度的相关系数(最大的相关系数)都等值地进行衰减(因为往 uA 走了一步,所以减去一个小的正值 γAA )。

这个时候,对于那些 jAc 的维度,如果要把一个j也加到 A 里面,就要 cj(γ)=c^jγaj=C^γAA ,此时可以算出一个 γ ;当然也可能相关系数是负的,所以 c^jγaj=(C^γAA) ,此时也可以算出一个 γ ;所以实际上我们是取上面两个 γ 中的较小值,同时,对所有 jAc 都要做check取出一个最小的 γ^

γ^=min+jAcC^c^jAAaj,C^+c^jAA+aj.

这个最小 γ^ 值对应的 j^ 这个维度就可以被加入到选出来的特征维度集合 A 了。新的active set是 A+=A{j^} 。最大(绝对值)相关系数是 C^γ^AA

得证。


这里写图片描述
图3

图3是LARS的特征变化图,和图1类比,发现三种方法的结果看起来几乎都差不多,事实上他们也确实产生类似的稀疏系数。(关于LARS如何改造成LASSO可以参考[1]和[3]的先关章节,稍作修改即可,本文等后面有时间再补。)图3右图画的是相关系数的绝对值数值大小随着迭代选择的步数k的变化,

|c^kj|=|xj(yμ^k1)|

可以看到不同的维度一旦被选择后就会一起衰减了,前面已经讨论过。

在LARS过程中,我们每一步都可以直接得到预测值 μ^A ,不过如果我们希望得到 μ^A=Xβ^A 中稀疏的 β^A (只有选出来的维度非零)。应该这么做呢?假设我们当前的 β^A 是已知了的,根据前面的讨论,下一步是

μ^A+=μ^A+γ^uA=Xβ^A+γ^XAwA=X(β^A+γ^δA)

其中 δA 是吧 wA |A| 长扩展成m维度长——把 jA 位置的元素用 wA 中相应元素,其余位置补零。这样就得到了下一步的稀疏系数应该是 β^A+γ^δA

这一篇就写到这里,描述了两种和lasso相关性强的特征选择方法,都可以产生稀疏的结果。尤其是LARS,每次选择都可以最优策略地加进一个维度,使得最多m步就可以结束算法。本系列到目前为止的(一)(二)(三)都和线性回归相关,线性回归三部曲到这里就暂告段落;接下来准备写一下决策树、逻辑回归等基础。加油加油!

参考资料
[1] Bradley Efron,Least Angle Regression
[2] dengcai, Unsupervised Feature Selection for Multi-cluster Data,KDD2010
[3] The Elements of Statistical Learning

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页