自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Bin 的专栏

让更多人了解“机器学习”

  • 博客(6)
  • 资源 (7)
  • 论坛 (1)
  • 收藏
  • 关注

原创 论文阅读笔记之ICML2012::The Landmark Selection Method for Multiple Output Prediction 基于代表性特征选取的多维度回归方法

论文目标:做high dimensional regression的问题,即 一般做回归的时候y的维度会比x低,甚至是一维的,比如一般用回归来做分类、预测。但是y的维度如果比较高,而x可以是高维也可以是低维,回归问题可能需要有不一样的角度去思考。主要idea:假设y中的feature是有冗余的,可以用一部分feature来拟合出整个y,我们需要找到那一些“好

2013-04-26 18:46:07 1582

转载 距离计算方法总结

在做很多研究问题时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。  本文的目的就是对常用的相似性度量作一个总结。本文目录:1. 欧氏距离2. 曼哈顿距离3. 切比雪夫距离4. 闵可夫斯基距离5. 标准化欧氏距离6. 马氏距离7. 夹角余

2013-04-26 18:40:55 8488

原创 今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML)书,章节1.2,Probability Theory (上)

原创书写,转载请注明此文出自:http://blog.csdn.net/xbinworld,Bin的专栏 Pattern Recognition and Machine Learning (PRML)书,章节1.2,Probability Theory (上)这一节是浓缩了整本书关于概率论的精华,突出一个不确定性(uncertainty)的理解。我看的比较慢,是想要细扣一下,而

2013-04-26 18:34:32 2430 1

原创 今天开始学模式识别与机器学习Pattern Recognition and Machine Learning 书,章节1.1,多项式曲线拟合(Polynomial Curve Fitting)

原创书写,转载请注明此文出自:http://blog.csdn.net/xbinworld,Bin的专栏 Pattern Recognition and Machine Learning (PRML)书学习,章节1.1,介绍与多项式曲线拟合(Polynomial Curve Fitting)博士也快念完了,明年毕业,今年开始准备毕业相关的东西,感觉自己做machine lear

2013-04-26 18:32:51 3715 1

原创 机器学习降维算法四:Laplacian Eigenmaps 拉普拉斯特征映射

原创书写,转载请注明此文出自:http://www.cnblogs.com/xbinworld,http://blog.csdn.net/xbinworld Laplacian Eigenmaps 继续写一点经典的降维算法,前面介绍了PCA,LDA,LLE,这里讲一讲Laplacian Eigenmaps。其实不是说每一个算法都比前面的好,而是每一个算法都是从不同角度去看问题,

2013-04-26 18:15:22 19230 4

原创 机器学习降维算法三:LLE (Locally Linear Embedding) 局部线性嵌入

如引用请务必注明此文出自:http://blog.csdn.net/xbinworldLLE    Locally linear embedding(LLE)[1] 是一种非线性降维算法,它能够使降维后的数据较好地保持原有流形结构。LLE可以说是流形学习方法最经典的工作之一。很多后续的流形学习、降维方法都与LLE有密切联系。见图1,使用LLE将三维数据(b)映射到二维(c)

2013-04-26 18:02:54 14510 3

2018 - Optimization Methods for Large-Scale Machine Learning.pdf

Optimization Methods for Large-Scale Machine Learning, Bottou写的最新综述,大规模机器学习前沿理论,SGD等,不可错过

2020-02-09

A disciplined approach to neural network hyper-parameters Part I

A disciplined approach to neural network hyper-parameters Part 1 -- learning rate, batch size, momentum, and weight decay, by Leslie N. Smith

2020-02-09

Matplotlib.ipynb

Matplotlib 是 Python 中最常用的一个绘图库,主要用于绘制各种图形,包括散点图、柱状图、3D图、等高线图等等。在做研究过程中肯定会经常用。 在文章https://xubin.blog.csdn.net/article/details/104224007做一个简单的入门介绍,也给出极佳的参考手册,以备查用。我自己用jupyter notebook实现了一遍。给出jupyter源码。

2020-02-08

convex optimization, book+slides

经典的convex optimization书+课件资料,值得收藏,是学习优化的入门资料之一。

2018-09-02

Learning from data书电子版

推荐想要系统学习机器学习与统计学习方法的同学,这本书可以作为经典教材,有一定深度。

2018-08-26

矩阵求导手册Matrix Differentiation

矩阵求导常见的公式,值得收藏,以备未来查询之用!!

2018-01-19

Reinforcement Learning an Introduction,2018最新版(第二版)

RL经典教学书籍,2018年最新版本,是想学习强化学习入门的必备资料!(444页)

2018-01-13

大饼博士X的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除