自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Bin 的专栏

让更多人了解“机器学习”

  • 博客(6)
  • 资源 (7)
  • 论坛 (1)
  • 收藏
  • 关注

原创 ISSCC 2017论文导读 Session 14:A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Pro

A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Processor and a CIS Integrated with Always-On Haar-Like Face Detector单位:KAIST(韩国科学技术院)——ISSCC上大神级的机构···DNN的加速器,面向不同的应用有着不同的能效需求:0.

2017-02-19 23:53:58 2277

原创 ISSCC 2017论文导读 Session 14:ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel DVAFS CNN Processor in 28nm

ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable CNN Processor in 28nm FDSOI单位:EAST-MICAS, KU Leuven(鲁汶大学)本文是我觉得本次ISSCC2017 session 14中最好的一篇,给人的启示有很多,比如一款SOC可以

2017-02-18 21:48:42 3002 1

原创 ISSCC 2017论文导读 Session 14: A 28nm SoC with a 1.2GHz Prediction Sparse Deep-Neural-Network Engine

A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse Deep-Neural-Network Engine with >0.1 Timing Error Rate Tolerance for IoT Applications单位:Harvard(哈佛大学)这是一篇专门为DNN加速设计的芯片,在CNN加速芯片设计当道的今天也算是非常另类了~~不过能在ISSC

2017-02-15 00:02:43 1639

原创 ISSCC 2017论文导读 Session 14 Deep Learning Processors,DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN

DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN Processor for General-Purpose Deep Neural Networks单位:KAIST(韩国科学技术院,电子工程-半导体系统实验室)KAIST是ISSCC的常客,一年要在上面发好几篇芯片论文,16年ISSCC上Session 14有一半的paper是出自KAIST的,只能说怎一个牛字了得

2017-02-12 23:42:54 4104 1

原创 ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network

最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下。A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28nm for Intelligent Embedded Systems单位:STMicroelectronics(意法半导体) 这是一篇很综合

2017-02-12 03:29:22 4754

原创 深度学习方法(九):自然语言处理中的Attention Model注意力模型

上一篇博文深度学习方法(八):Encoder-Decoder模型,基本Sequence to Sequence模型描述了基本的Encoder-Decoder模型,在作为翻译模型的时候,这种基本的Encoder-Decoder模型有较大缺点,就是Encoder部分每一个输入对Decoder部分每一个输出的贡献都是一样的。下面先看一个例子[1],输入的是英文句子:Tom chase Jerry,Enco

2017-02-04 00:27:43 16750 4

2018 - Optimization Methods for Large-Scale Machine Learning.pdf

Optimization Methods for Large-Scale Machine Learning, Bottou写的最新综述,大规模机器学习前沿理论,SGD等,不可错过

2020-02-09

A disciplined approach to neural network hyper-parameters Part I

A disciplined approach to neural network hyper-parameters Part 1 -- learning rate, batch size, momentum, and weight decay, by Leslie N. Smith

2020-02-09

Matplotlib.ipynb

Matplotlib 是 Python 中最常用的一个绘图库,主要用于绘制各种图形,包括散点图、柱状图、3D图、等高线图等等。在做研究过程中肯定会经常用。 在文章https://xubin.blog.csdn.net/article/details/104224007做一个简单的入门介绍,也给出极佳的参考手册,以备查用。我自己用jupyter notebook实现了一遍。给出jupyter源码。

2020-02-08

convex optimization, book+slides

经典的convex optimization书+课件资料,值得收藏,是学习优化的入门资料之一。

2018-09-02

Learning from data书电子版

推荐想要系统学习机器学习与统计学习方法的同学,这本书可以作为经典教材,有一定深度。

2018-08-26

矩阵求导手册Matrix Differentiation

矩阵求导常见的公式,值得收藏,以备未来查询之用!!

2018-01-19

Reinforcement Learning an Introduction,2018最新版(第二版)

RL经典教学书籍,2018年最新版本,是想学习强化学习入门的必备资料!(444页)

2018-01-13

大饼博士X的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除